Septopremaxillary ligament traction system: a review

Authors

  • Rajani R. Elayadath Department of Public Health Dentistry, Royal Dental College, Chaliserry, Palakkad District, Kerala, India
  • Biswas P. Palakunnu Department of Orthodontics and Dentofacial Orthopedics, Royal Dental College, Chaliserry, Palakkad District, Kerala, India

DOI:

https://doi.org/10.18203/2349-3933.ijam20193304

Keywords:

Labioseptopremaxillary region, Maxillary labial frenum, Nasal septum, Nasolabial muscles, Premaxillary/maxillary growth

Abstract

Over the years, several animal studies have been conducted concerning the role of cartilaginous nasal septum, septopremaxillary ligament in midfacial growth. Most of the studies utilized non primate animal models at first and then more recently in primates such as chimpanzee. Proper choice of animal model to extrapolate from is critical for successful experimental design. Although nonhuman primates are phylogenetically closer to humans than other mammalian groups for better extrapolation to human condition, not all the craniofacial experiments require primate models. Renewed interests in understanding the influence of septopremaxillary ligament resection on midfacial growth led to many in vitro experiments on animal models. Recently systematic review of relevant animal experiment is regarded as a prerequisite for the conduct of the new clinical trials. Despite this fact, the literature addressing this topic in humans and systematic review on the effect of the septopremaxillary ligament is scarce. The more recent studies show that the maxillary labial frenum encloses the septopremaxillary ligament and forms an important constituent of septopremaxillary traction system. The biomechanical force mediating through the septopremaxillary ligament, maxillary labial frenum and nasolabial muscles results in stimulating their effects on sagital growth of the maxilla. The main purpose of this review is to update and extend the knowledge of the role of septopremaxillary traction system on the midfacial growth by synthesizing the available literature involving the septopremaxillary ligament resection in experimental models. If this review could synthesize the results of relevant research, a change in the therapeutic notions can also be expected.

References

Hooijmans CR, Ritskes-Hoitinga M. Progress in using systematic reviews of animal studies to improve translational research. PLoS Med. 2013;10(7):e1001482.

Hooijmans CR, Rovers MM, De Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14(1):43.

Carlson DS. Theories of craniofacial growth in the postgenomic era. Seminars in Orthodontics. WB Saunders; 2005: 172-183.

Growth modification. From molecules to mandible. In: McNamara JA, ed. Growth Modification: What Works, What Doesn’t, and Why. Craniofacial Growth Series 35, Center for Human Growth and Development. The Uni Michigan, Ann Arbor. 1999:17-71.

Latham RA. Maxillary development and growth: the septo-premaxillary ligament. J Anatomy. 1970;107(Pt 3):471.

Precious D, Delaire J. Balanced facial growth: a schematic interpretation. Oral Surg Oral Med Oral Pathol. 1987;63(6):637-44.

Delaire J, Precious D. Interaction of the development of the nasal septum, the nasal pyramid and the face. Int J Pediatr Otorhinolaryngol. 1987;12(3):311-26.

Babula WJ, Smiley GR, Dixon AD. The role of the cartilaginous nasal septum in midfacial growth. Am J Orthodontics Dentofacial Orthopedics. 1970;58(3):250-63.

Siegel MI, Mooney MP, Kimes KR, Gest TR. Traction, prenatal development, and the labioseptopremaxillary region. Plastic Reconstructive Surg. 1985;76(1):25-8.

Siegel MI, Mooney MP, Eichberg JW, Gest T, Lee DR. Septopremaxillary ligament resection and midfacial growth in a chimpanzee animal model. J Craniofacial Surg. 1990;1(4):182-6.

Hall BK, Precious DS. Cleft lip, nose, and palate: the nasal septum as the pacemaker for midfacial growth. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115(4):442-7.

Bergland O, Borchgrevink H. The role of the nasal septum in midfacial growth in man elucidated by the maxillary development in certain types of facial clefts: a preliminary report. Scandinavian J Plastic Reconstruct Surg. 1974;8(1-2):42-8.

Wong KK, Filatov S, Kibblewhite DJ. Septoplasty retards midfacial growth in a rabbit model. Laryngoscope. 2010;120(3):450-3.

Sandercock P, Roberts I. Systematic reviews of animal experiments. Lancet. 2002;360(9333):586.

Copray JC. Growth of the nasal septal cartilage of the rat in vitro. J Anatomy. 1986;144:99.

Gange RJ, Johnston LE. The septopremaxillary attachment and midfacial growth: an experimental study on the albino rat. Am J Orthodontics Dentofacial Orthopedics. 1974;66(1):71-81.

Al Dayeh AA, Herring SW. Cellular proliferation in the nasal septal cartilage of juvenile minipigs. J Anatomy. 2014;225(6):604-13.

Wealthall RJ, Herring SW. Endochondral ossification of the mouse nasal septum. The Anatomical record part a: discoveries in molecular, cellular, and evolutionary biology. Off Pub Am Assoc Anatomists. 2006;288(11):1163-72.

Wexler MR, Sarnat BG. Rabbit snout growth after dislocation of nasal septum. Arch Otolaryngol. 1965;81(1):68-71.

Bernstein L. Early submucous resection of nasal septal cartilage: a pilot study in canine pups. Arch Otolaryngol. 1973;97(3):273-8.

Squier CA, Wada T, Ghoneim S, Kremenak CR. A histological and ultrastructural study of wound healing after vomer resection in the beagle dog. Arch Oral Biol. 1985;30(11-12):833-41.

Siegel MI, Mooney MP, Eichberg JW, Gest T, Lee DR. Nasal capsule shape changes following septopremaxillary ligament resection in a chimpanzee animal model. Cleft Palate-Craniofacial J. 1992;29(2):137-42.

Mooney MP, Siegel MI. Premaxillary‐maxillary suture fusion and anterior nasal tubercle morphology in the chimpanzee. Am J Physical Anthropol. 1991;85(4):451-6.

Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal res. PLoS Biol. 2010;8(6):e1000412.

Hooijmans CR, Rovers MM, De Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14(1):43.

Murthy J, Manisha D. Pre-maxillary complex morphology in bilateral cleft and hypothesis on laterality of deviated pre-maxilla. Indian J Plastic Surg Off Pub Assoc Plastic Surg India. 2016;49(3):336.

Trevizan M, Consolaro A. Premaxilla: an independent bone that can base therapeutics for middle third growth!. Dental Press J Orthodontics. 2017;22(2):21-6.

Mooney MP, Siegel MI. Developmental relationship between premaxillary-maxillary suture patency and anterior nasal spine morphology. Cleft Palate J. 1986;23(2):101-7.

Sarnat BG, Wexler MR. Growth of the face and jaws after resection of the septal cartilage in the rabbit. Am J Anatomy. 1966;118(3):755-67.

Sarnat BG, Wexler MR. The snout after resection of nasal septum in adult rabbits. Arch Otolaryngol. 1967;86(4):463-6.

Sarnat BG, Wexler MR. Longitudinal development of upper facial deformity after septal resection in growing rabbits. British J Plastic Surg. 1969;22(3-4):313-23.

Ohyama K. Experimental study on growth and development of dentofacial complex after resection of cartilaginous nasal septum. Bull Tokyo Med Dent Univ. 1969;16:157-176.

Stenstrom SJ, Thilander BI. Healing of surgically created defects in the septal cartilages of young guinea pigs. Plastic Reconstruct Surg. 1972;49(2):194-9.

Moss ML. The functional matrix hypothesis revisited. 1. The role of mechanotransduction. Am J orthodontics and dentofacial orthopedics. 1997;112(1):8-11.

Pereira S, Tettamanti M. Ahimsa and alternatives-the concept of the 4th R. The CPCSEA in India. ALTEX-Alternatives Animal Exp. 2005;22(1):3-6.

Mandal J, Parija SC. Ethics of involving animals in res. Tropical Parasitol. 2013;3(1):4.

Van Luijk J, Bakker B, Rovers MM, Ritskes-Hoitinga M, de Vries RBM, Leenaars M. Systematic Reviews of Animal Studies; Missing Link in Translational Research?. PLoS One. 2014;9: e89981.

Noyes HJ. The anatomy of the Frenum Labii in newborn infants. Angle Orthodontist. 1935;5(1):3-8.

Ross RO, Brown FH, Houston GD. Histologic survey of the frena of the oral cavity. Quintessence Int. 1990;21(3).

Lavergne J, Petrovic A. Discontinuities in occlusal relationship and the regulation of facial growth. A cybernetic view. Euro J Orthodontics. 1983;5(4):269-78.

Standerwick RG, Roberts WE. The aponeurotic tension model of craniofacial growth in man. Open Dentistry J. 2009;3:100.

Akgüner M, Barutçu A, Karaca C. Adolescent growth patterns of the bony and cartilaginous framework of the nose: a cephalometric study. Annals Plastic Surg. 1998;41(1):66-9.

Mooney MP, Siegel MI, Kimes KR, Todhunter J. Premaxillary development in normal and cleft lip and palate human fetuses using three-dimensional computer reconstruction. Cleft Palate-Craniofacial J. 1991;28(1):49-54.

Delaire J. The potential role of facial muscles in monitoring maxillary growth and morphogenesis. In Muscle adaptation in the craniofacial region 1978 (pp. 157-180). Center Human Growth Development Univ Michigan Ann Arbor.

Graber TM, Rakosi T, Petrovic AG. Dentofacial orthopedics with functional appliances. 2nd Ed. St. Louis: C.V. Mosby Co; 2009.

Narayanan PV, Adenwalla HS. Unfavourable results in the repair of the cleft lip. Indian J Plastic Surg Off Pub Assoc Plastic Surg India. 2013;46(2):171.

Downloads

Published

2019-07-24

Issue

Section

Review Articles